| 1. | Higher Mathematics and Data Science | | | | | | | |-----|-------------------------------------|--|---|--------------------|---------|--|--| | | Water Engineering Mas | | | | WEM1110 | | | | 2. | ECTS | 3 CP | 3. | Workload | 90 h | | | | | Semester hours per week | 2 SWS | | Presence hours | 30 h | | | | | Module type | Compulsory | | Self-study hours | 60 h | | | | 4. | Exam type | Written examination | • | 60 min | WEM1110 | | | | | Study achievements | no | | | | | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | | Semester of studies | 1. Semester | | Lecture | x | | | | | Length (semesters) | 1 | | Excercise | x | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | | | | | | Module abbreviation | hmath | | Seminar | | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | | 2. Prof. DrIng. habil. M. Oertel (oer) | | | | | | | 8. | Knowledge | * Students will learn multivariate statistics for geo and water sciences, ordinary multiple regression techniques including hypothesis testing methods * Course participants will know multi-variate classification and multi-dimensional pattern recognition techniques for water sciences * Students will learn time series analysis for water science, anova and auto-correlation techniques, trend analyis, outlier identification and testing for stationarity and significant changes in mean, variance or other moments * Students will learn regionalization techniques, kriging, partial moments * Participants will learn differential equations in water science and engineering for flow systems: analytical and numerical solutions and integration | | | | | | | 9. | Skills | * Students will acquire skills to apply learning sciences and use these models for prediction. * Participants will be able to analyse time seried develop prediction techniques based anovare. * Students will acquire the skill to regionalize of identify the uncertainty of the prediction. * Students will be able to solve partial different. | Ability to define analyse complex multivariate data and identify stat. models Students will acquire skills to apply learning techniques to multi-variate data in water sciences and use these models for predictions Participants will be able to analyse time series, identify trends and non-stationarity, develop prediction techniques based anova techniques and filters Students will acquire the skill to regionalize data based on statistical techniques and | | | | | | 10. | Learning outcomes | * Students can solve water science and water engineering problems with adequate statistical, analytical, and numerical tools * Students can characterise and analyse big data in water sciences (high-resolution time series and digital maps) applying time series analysis and regionalization techniques * Students can solve water flow, solute and mass transport equations in all compartments and all media (air-evaporation, soil-Richards equation, ground water - Laplace and river St. Venant equ. with analytical or numerical tools * Students can find optimal solutions for water distribution and fit analytical and numerical models and identify uncertainty, multi-finality and model fitness | | | | | | | 11. | Literature | * Papula (2014) Mathematik für Ingenieure ur
Angewandte Aufgaben, Formelsammlung. \$
* Kreyszig (2016) Engineering Mathematics. 1 | Spr | inger (5 volumes) | | | | | 1. | Research Method | ls | | | | | | |-----|------------------------------|---|---|---|------------|--|--| | | Water Engineering Mas | | | | WEM1120 | | | | 2. | ECTS | 3 CP | 3. | Workload | 90 h | | | | | Semester hours per week | 2 SWS | | Presence hours | 30 h | | | | | Module type | Compulsory | | Self-study hours | 60 h | | | | 4. | Exam type | Project | | Con olday floure | WEM1121 | | | | | Study achievements | yes (SL) | | | WEM1122 | | | | 5. | Participation prerequisites | yes (et) | | | WEIGHT 122 | | | | J. | i articipation prerequisites | | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | | Semester of studies | 1. Semester | | Lecture | x | | | | | Length (semesters) | 1 | | Excercise | x | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | x | | | | | Module abbreviation | reme | | Seminar | | | | | | Responsible Lecturers | 1. Prof. DrIng. habil. M. Oertel (oer) | | Excursion | | | | | | · | 2. Prof. Dr. rer. nat. C. Külls (kü) | | | | | | | | | * Software tools for reproducible research and programming * Scientific editing and redaction * Scientific graphs and visualization of data * Programming for data science and data analysis (e.g. MATLAB or Python) * Learning and deep learning algorithms for time series analysis * Artificial intelligence and pattern recognition for applied water science * Software for statistical analysis of big data * Scientific visualization and presentation techniques | | | | | | | 9. | Skills | * Students will learn to use modern software to and automated reading, analysis of data structure, write and received text using adequate tools and methods for and reviewing * Students will learn an object oriented, struct scientific analysis * Students will be able to apply artificial analysis | rea
dac
refe | ms It / review scientific articles and erencing (bilbiography), writing It d programming language for | I | | | | 10. | Learning outcomes | * Students can write scientific articles for peer the peer redation and review process * Students can program data collection, data for water science problems * Students understand and are able to write, water science models, e.g. rainfall-runoff, ch | * Students can program data collection, data analysis and visualization algorithms for water science problems * Students understand and are able to write, modify and improve algorithms of water science models, e.g. rainfall-runoff, channel flow and groundwater flow * Students are able to apply Al-based algorithms for learning, optimization and | | | | | | 11. | Literature | * Hastie, Tibshirani, Friedman (2018) The Eler
* Raschka (2018) Python Machine Learning. l | Kreyszig (2016) Advanced Engineering Mathematics. John Wiley & Sons Hastie, Tibshirani, Friedman (2018) The Elements of Statistical Learning. Springer Raschka (2018) Python Machine Learning. Packt Ed. Ebel, Bliefert, Russey (2004) The art of scientific writing. Wiley. | | | | | | 1. | Water Regulation | s | | | | | |-----|-----------------------------|--|----------|--------------------|---------|--| | | Water Engineering Mas | | | | WEM1130 | | | 2. | ECTS | 3 CP | 3. | Workload | 90 h | | | | Semester hours per week | 2 SWS | | Presence hours | 30 h | | | | Module type | Compulsory | | Self-study hours | 60 h | | | 4. | Exam type | Written examination | | 60 min | WEM1130 | | | | Study achievements | | | | | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | · | | | | Semester of studies | 1. Semester | | Lecture | x | | | | Length (semesters) | 1 | | Excercise | | | | | Teaching language | English | | Practical training | | | | | Form of learning | Presence | | Project work | | | | | Module abbreviation | ware | | Seminar | | | | |
Responsible Lecturers | 1. DrIng. K. Wellbrock (wel) | | Excursion | | | | | . 100 ponono 20010. 010 | 2. Prof. Dr. rer. nat. C. Külls (kü) | | | | | | | | * European Water Framework Directive (WFD) for water management * Groundwater regulations, Groundwater Directive and Nitrate Directive * Drinking water regulations based on WHO standards and recommendations * Sewage water regulations * Bathing water quality Directive * Flood Management Directive and the implications for urban planning * Environmental Impact Assessment standards * German soil protection law as a guideline (in the absence of a EU Directive) | | | | | | 9. | Skills | Students are able * to apply for a permission under European w * to assess water quality based on European * to appply flood risk management regulations * to prepare applications for water abstraction water resources | reç
s | gulations | | | | 10. | Learning outcomes | Students * are aware of relevant water laws and regulations in Europe * have written a water permit application * can assess water regulations during designing and operation of technical infrastructure related to water engineering | | | | | | 11. | Literature | Kingston (2017): European Environmental Law. Cambridge University Press, 2017. Sands et al. (2018): Principles of International Environmental Law, Cambridge University Press, 2018. McCaffrey, Stephen C. (2001). The Law of International Watercourses: Non-navigational ses. Oxford University Press. ISBN 978-0-19-825787-5. Borchardt, D., et al. (2016): Integrated Water Resources Management: Concept, Springer | | | | | | 1. | Advanced Waste | Water Treatment | | | | | | |-----|-----------------------------|--|---|---|---------|--|--| | | Water Engineering Mas | ter (WEM) | | | WEM1140 | | | | 2. | ECTS | 3 CP | 3. | Workload | 90 h | | | | | Semester hours per week | 2 SWS | | Presence hours | 30 h | | | | | Module type | Compulsory | | Self-study hours | 60 h | | | | 4. | Exam type | Project | | , | WEM1141 | | | | | Study achievements | yes (SL) | | | WEM1142 | | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | | Semester of studies | 1. Semester | | Lecture | x | | | | | Length (semesters) | 1 | | Excercise | | | | | | Teaching language | English | | Practical training | x | | | | | Form of learning | Presence | | Project work | x | | | | | Module abbreviation | awwt | | Seminar | | | | | | Responsible Lecturers | 1. DrIng. K. Wellbrock (wel) | | Excursion | | | | | | | 2. Prof. DrIng. M. Grottker (gro) | | | | | | | | | * the theoretical background of occurence of micropollutants, microplastics and multiresistant bacteria in sewage * the relevant mechanisms of micropollutants's removal, such as biodegradation, sorption or photolysis in sewage treatment plants and related models, * techniques of advanced waste water treatment (e.g. activated carbon, ozonisation, UV-treatment, membrane technology) for enhanced removal of micropollutants * to evaluate this methods in terms of cost efficency, energy demand, carbon footprint, removal rates etc. * the principles of online-monitoring for COD, nutrients and electrochemical parameters | | | | | | | 9. | Skills | Students will be able * to conduct laboratory analysis (of nutrients of * to setup and maintain an online-monitoring of * to design sampling programmes in sewage of * to design treatment steps for enhanced mice * to perform dynamic modelling of biological we sludge process) with respect to removal of removal of respect to removal of removal of r | sys
sys
rop
/asi | tem
tems and sewage treatment
ollutant removal
tewater treatment (mainly act | | | | | 10. | Learning outcomes | * evaluate existing sewage treatment plants in micropollutants and estimate the emissions | * aquire and analyse data of existing treatment plants * evaluate existing sewage treatment plants in terms of removal rates with respect to micropollutants and estimate the emissions * design new sewage treatment plants or treatment steps for enhanced micropollutant | | | | | | 11. | Literature | * Gray (2017) Water Science and Technology
Taylor & Francis
* Butler et al. (2018, eds.) Urban Drainage, 4t
* Metcalf & Eddy (2013) Wastewater Enginee | th e | edtion, CRC/ Taylor Francis | | | | | 1. | Urban Water Protection | | | | | | |-----|-----------------------------|--|--------------------|--|------------------------|--| | | Water Engineering Mas | ter (WEM) | | | WEM1150 | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | Module type | Compulsory | | Self-study hours | 120 h | | | 4. | Exam type | Portfolio | | | WEM1150 | | | | Study achievements | (announcement in 1st or 2nd semester | ·w | eek) | | | | 5. | Participation prerequisites | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | Semester of studies | 1. Semester | | Lecture | X | | | | Length (semesters) | 1 | | Excercise | | | | | Teaching language | English | | Practical training | | | | | Form of learning | Presence | | Project work | x | | | | Module abbreviation | uwp | | Seminar | | | | | Responsible Lecturers | 1. Prof. DrIng. M. Grottker (gro) | | Excursion | x | | | | | 2. DrIng. K. Wellbrock (wel) | | | | | | | Knowledge | * Urban hydrology - introduction, objectives, methods * Processes of urban hydrology - flow paths, sources and sinks of urban waters and loads, transport and storage, degradation and separation processes * Hydrometry in urban water systems - measurement parameters, sensors, devices and transmission systems * Emission and immission based concepts of urban water protection - development goals, urban water habitat, ecological sanitation, stormwater management * Case study on urban water protection - identification/measurement of river catchment characteristics, modelling of water balance in urban catchment areas, hydrological proof. developing river protection measures | | | | | | 9. | Skills | Students are able * to identify the detailed background / interact * to understand the interaction between drain waters * to understanding and application of emission their strengths and weaknesses * to use special knowledge and skills on urbatexperiments on water quality (nutrients etc. urban catchment areas | nag
on a
n h | e systems, treatment plants an
nd immission based regulation
ydrology - laboratory and field | d urban
s including | | | 10. | Learning outcomes | Students * can analyse and interpret complex urban water systems * can evaluate emission and immission based methods * intensified their abilities in teamwork, laboratory and field experiments | | | | | | 11. | Literature | * Butler, D.; et al. (2018)
Urban drainage, CRC Press * Gray, N. (2017) Water Science & Technology, CRC Press * BKW M3/M7: Immissionsorient. Anfordg. an Misch- und Niederschlagswassereinleitungen * ARW-1: Schleswig-Holstein regulations on water balance of urban catchments * H. Lotus, Water Resources, Pollution and Management, ISBN-13: 9781632397614 * T.A. Larsen et al, Source Separation and Decentralization for Wastewater | | | | | | 1. | Hydraulic Engine | erina | | | | | |-----|-----------------------------|---|---|---|---------|--| | | Water Engineering Mas | _ | | | WEM1160 | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | Module type | Compulsory | | Self-study hours | 120 h | | | 4. | Exam type | Project | <u> </u> | Com clasy Houre | WEM1161 | | | | Study achievements | yes (SL) | | | WEM1162 | | | 5. | Participation prerequisites | y == (==) | | | | | | | Taradipation proroquiotico | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | Semester of studies | 1. Semester | | Lecture | X | | | | Length (semesters) | 1 | | Excercise | х | | | | Teaching language | English | | Practical training | | | | | Form of learning | Presence | | Project work | х | | | | Module abbreviation | hyeng1 | | Seminar | | | | | Responsible Lecturers | 1. Prof. DrIng. habil. M. Oertel (oer) | | Excursion | | | | | | 2. Prof. Dr. rer. nat. C. Külls (kü) | | | | | | 8. | Knowledge | * Basic knowledge of hydraulic terms, steady, unsteady, uniform, non-uniform, sub- and supercritical flow conditions * Hydromechanics in natural river systems * Hydraulic structure design for restoration of river systems; e.g. fish steps or weirs * Hydraulic laboratory techniques - Froude- und Reynoldsmodels, incl. scale effects - Measurement devices, e.g. ultrasonic and ADV probes * Hydrometry in surface water (e.g. ADCP) based on DIN EN ISO 748 * Comparision between experimental, in-situ and numerical results * Analysing software tools (e.g. MATLAB) | | | | | | 9. | Skills | * Understanding of hydraulic processes and h * Designing fish steps and weirs for river resto * Application of experimental models in hydrau model scales and knowledge about expecte * Usage of special measurement devices and * Application of surface water in-situ measurm | rati
ulic
ed s
da | on
laboratories incl. correct choice
scale effects
ta analysis software products | | | | 10. | Learning outcomes | * Students are able to understand hydraulic processes in river systems * Students can design various hydraulic structures * Students will understand the complexity of experimental models and their scales * Students can identify scale effects and their influence on data analysis * Students are able to plan and analyse measurement campaings in laboratories and in-situ campaigns in the river environment | | | | | | 11. | Literature | * USBR (1980) Hydraulic Laboratory Techniqu
* DIN EN ISO 748 | Oertel, M., Scriptum Hydraulic Laboratory Techniques USBR (1980) Hydraulic Laboratory Techniques, United States Bureau of Recl. UNITED ISO 748 Morgenschweis, G. (2012) Hydrometrie, 2. Edition, Springer | | | | | 1. | Simulation and M | odelina I | | | | | |-----|-----------------------------|--|--|---|---------|--| | | Water Engineering Mas | | | | WEM1170 | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | Module type | Compulsory | | Self-study hours | 120 h | | | 4. | Exam type | Project | | , | WEM1171 | | | | Study achievements | yes (SL) | | | WEM1172 | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | 6. | Frequency | Winter semester | 7. | Form of learning | | | | | Semester of studies | 1. Semester | | Lecture | x | | | | Length (semesters) | 1 | | Excercise | | | | | Teaching language | English | | Practical training | | | | | Form of learning | Presence | | Project work | X | | | | Module abbreviation | sim1 | | Seminar | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | 2. Prof. DrIng. habil. M. Oertel (oer) | | | | | | | | * Basic knowledge of hydrogeological terms * Properties of aquifers, physical laws of motion and flow of groundwater * Water movement in the unsaturated (recharge) and saturated zones * Measurement of parameters of conductivity, porosity, storativity * Processes and methods to determine groundwater recharge * Pumping test analysis for unconfined and confined and multi-layer aquifers * Analytical groundwater modeling * Numerical groundwater modeling with ModFlow * Applications of groundwater hydrology for remediation and restoration of aquifers * Natural attenuation | | | | | | 9. | Skills | * Delineate and define and design groundwat * Estimate groundwater recharge in porous, fr * Estimate or determine hydraulic conductivity * Apply analytical laws of groundwater flow to * Apply and use numerical groundwater mode * Estimate model parameters and the uncerta * Carry out environmental impact analysis for g * Fit models for steady and non-steady flow of * Plan and verify and validate tracer tests * Use groundwater models for planning groun | ract
, po
sin
els t
inty
gro
ono | tured and complex aquifers prosity and storativity applified 1D and 2D problems for 2D and 3D problems of model results undwater related problems ditions | | | | 10. | Learning outcomes | * Students can design groundwater protection zones in various environments * Students can assess groundwater vulnerability and map it * Students can design groundwater monitoring networks, install piezometers * Students are able to apply, modify and validate analytical models * Students are able to develop complex numerical groundwater models, including parameter estimation, model calibration, validation and application to non-steady problems * Students are able to apply groundwater models for remediation measures * Students can use groundwater models to estimate sustainable yields and environmental flows | | | | | | 11. | Literature | * Fetter C.W. (2019) Applied Hydrogeology. P
* Fetter C.W. (2017) Contaminant Hydrogeolo | | | | | | 1. | Geographic Inform | mation Systems (GIS) | | | | | | |-----|------------------------------|---|--|---|---------|--|--| | | Water Engineering Mas | • | | | WEM1210 | | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | | Module type | Compulsory | | Self-study hours | 120 h | | | | 4. | Exam type | Project | | | WEM1210 | | | | | Study achievements | • | | | | | | | 5. | Participation prerequisites | | | | | | | | | . a. a. paalon p. o. oquiono | | | | | | | | 6. | Frequency | Summer semester | 7. | Form of learning | | | | | | Semester of studies | 2. Semester | | Lecture | X | | | | | Length (semesters) | 1 | | Excercise | x | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | | | | | | Module abbreviation | gis | | Seminar | | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | | 2. Prof. DrIng. habil. M. Oertel (oer) | | | | | | | | | * Field of GIS applications focusing on water engineering and hydrology * Basics in cartography * Introduction for GIS software products (e.g. QGIS, Open Source) * Sources, generation, analysis and presentation of geodata * Shapes, raster data, projections and their storage and manipulation | | | | | | | 9. |
Skills | * Application of GIS software in water engined
* Delineation of watersheds using raster data
* Interpolation of point data for estimating rain
* Editing and analysis of vector networks (rive
* Raster calculation for distributed hydrological
* Water balance modeling with GIS tools
* Presentation of maps for water management
* Flood mapping | nfal
r sy
al m | I fields by kriging, inverse dis
vstems), network properties
nodeling | tances | | | | 10. | Learning outcomes | * Students are able to create a GIS database
* Students can develop GIS based hydrologic | * Acquisition of basic GIS knowledge * Students can link database systems to geographic data * Students are able to create a GIS database for water projects * Students can develop GIS based hydrological structures and analyse them * Students can carry out water balance modeling for IWRM with GIS tools | | | | | | 11. | Literature | ISBN 978-3-642-34807-5
* Bill, R. (2010) Grundlagen der Geo-Informat
Heidelberg | Bill, R. (2010) Grundlagen der Geo-Informationssysteme, 5. Ed., Wichmann,
Heidelberg
van der Kwast, H., Menke, K. (2019) QGIS for Hydrological Applications: Recipes for | | | | | | 1. | Applied Freshwater Ecology | | | | | | | |-----|-----------------------------|--|--|--|---------|--|--| | | Water Engineering Mas | | | | WEM1220 | | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | | Module type | Compulsory | | Self-study hours | 120 h | | | | 4. | Exam type | Portfolio | | · | WEM1220 | | | | | Study achievements | (announcement in 1st or 2nd semester | ·w | eek) | | | | | 5. | Participation prerequisites | | | , | | | | | | | | | | | | | | 6. | Frequency | Summer semester | 7. | Form of learning | | | | | | Semester of studies | 2. Semester | | Lecture | X | | | | | Length (semesters) | 1 | | Excercise | | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | | | | | | Module abbreviation | afe | | Seminar | x | | | | | Responsible Lecturers | 1. Prof. Dr. N. Reintjes (rei) | | Excursion | | | | | | | 2. Prof. Dr. C. Külls (kü) | | | | | | | 8. | Knowledge | * Theory of freshwater ecology * Relevant physico-chemical parameters with focus on the autecology, population ecology and community ecology of the biota and on ecosystem ecology in flowing (rivers and streams) and standing waters (reservoirs, lakes) * Interaction of water bodies with anthropogenic use; a.o. (+) ecosystem services of freshwater ecosystems (+) legal framework for the use and protection of water bodies (+) assessment and monitoring of water quality (+) pollution with chemicals (+) eutrophication (+) biodiversity losses (+) neobiota (+) aquaculture | | | | | | | 9. | Skills | Students comprehend the complexity of aquinteraction with terrestrial, atmospheric, clima Students realise the value of freshwater syshumanity Students know the framework and the instrunatural water bodies | atio
ten | and geochemical processes and their ecosystem services | s for | | | | 10. | Learning outcomes | * Students are able to develop interdisciplinary approaches for the assessment and control of impacts of anthropogenic activities on freshwater ecosystems | | | | | | | 11. | Literature | of Limnology (Aquatic Ecology); Academic F
* Aquatic Ecology: A Multidisciplinary Journal
Different Organizational Levels, ISSN: 1386 | * Dodds, W. K. & M. R. Whiles (2019): Freshwater Ecology: Concepts and Applications of Limnology (Aquatic Ecology); Academic Press; ISBN 978-0128132555 * Aquatic Ecology: A Multidisciplinary Journal Relating to Processes and Structures at Different Organizational Levels, ISSN: 1386-2588, Springer. * Journal of Freshwater Ecology, Tayloer & Francis. | | | | | | 1. | Sustainable Urban Systems | | | | | | | |-----|-----------------------------|--|-----------------------------------|--|---------------------|--|--| | | Water Engineering Mas | | | | WEM1230 | | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | | Module type | Compulsory | | Self-study hours | 120 h | | | | 4. | Exam type | Portfolio | <u> </u> | 90 min | WEM1230 | | | | | Study achievements | (announcement in 1st or 2nd semester | w | | | | | | 5. | Participation prerequisites | (anneancement reter 2nd comeace | | <i>-</i> | | | | | ٥. | Tal dolpadori proroquiolos | | | | | | | | 6. | Frequency | Summer semester | 7. | Form of learning | | | | | | Semester of studies | 2. Semester | | Lecture | X | | | | | Length (semesters) | 1 | | Excercise | x | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | x | | | | | Module abbreviation | sus | | Seminar | | | | | | Responsible Lecturers | 1. Prof. F. Schwartze (schw) | | Excursion | | | | | | | 2. Prof. DrIng. M. Grottker (gro) | | | | | | | | | economic, social and ecological consequences and challenges * Structures and forms of urban development in different regions * Types and processes of formal and informal settlements especially in fast growing cities * urban stormwater systems - runoff formation, concentration and transport; drainage, storage and treatment facilities and their dimensioning * concepts for water sensitive urban design; impacts of land use on water balance and pollution loads * protection against extreme storm events | | | | | | | 9. | Skills | Students are able * to understand and describe complex urban * to draft urban improvment programs and pro- evaluate urban areas and systems as well a decision making and community-based cone * to understand the function and dimensionin * to calculate the urban water balance and de * to protect urban areas from extreme storm e | ojed
as i
cep
g c
edu | ets by using tools to analysis a
methods of participation in urb
of for urban upgrading and de
of urban stormwater systems
are measures for robust catch | oan
evelopment | | | | 10. | Learning outcomes | Students understand the concept of sustainability in urban systems and are acquainted with related formal and informal planning policies, strategies and instruments and their implementation Students have the ability to develop and design integrated planning solutions for water management in urban areas in different contextes and scales Students are able to develop and apply solutions of integrated water management with a specific regard on water and climate related adaptation measures in urban areas | | | | | | | 11. | Literature | * Mostafavi, Mohsen et al. (Ed.) (2010) Ecolog
* Pahl-Weber, Elke & Schwartze, Frank (Ed.) (
Integrated Planning and Design Solutions f
* Sharma, Ashock et al (ed.) (2018) Approach
Potential, Design, Ecological Health, Econo
Elsevier | (20
or
nes | 14) Space Planning and Des
future Megacities, Jovis, Berlir
to Water Sensitive Urban Des | ign.
า
sign - | | | | 1. | Hydrological Eng | ineering | | | | | |-----|-----------------------------|---|-----------------------------|--|---------|--| | | Water Engineering Mas | ter (WEM) | | | WEM1240 | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | Module type | Compulsory | | Self-study hours | 120 h | | |
4. | Exam type | Project | | , | WEM1240 | | | | Study achievements | | | | | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | 6. | Frequency | Summer semester | 7. | Form of learning | | | | | Semester of studies | 2. Semester | | Lecture | X | | | | Length (semesters) | 1 | | Excercise | х | | | | Teaching language | English | | Practical training | | | | | Form of learning | Presence | | Project work | | | | | Module abbreviation | hyeng2 | | Seminar | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | 2. Prof. DrIng. habil. M. Oertel (oer) | | | | | | | | * Hydrological processes: precipitation, evaporation, infiltration, percolation, discharge, runoff generation * Rainfall-runoff models for plots and micro, meso and macro scale basins * Analysis of hydrological extremes: droughts and floods * Hydrometry and development of monitoring networks * Hydrological data analyis: a) statistical, b) parametric and c) conceptual * Design of hydrological engineering approaches: artificial wetlands, flood retention, artificial recharge, natural attenuation, retention of water and solutes * Remediation schemes for surface and groundwater * Sustainable Water Management | | | | | | 9. | Skills | * Students understand and can predict hydro * Students can measure hydrological process * Students can analyse hydrological data (pre * Students can apply and develop hydrologica * Students can plan and execute hydrologica aquifer recharge, schemes, meadow irrigatic solute retention and remediation schemes * Students can assess the environmental imp * Students know integrated water resources a engineering measure to improve water man | ecip
al r
I er
on, | in the field bitation, runoff) ainfall-runoff models ngineering designs e.g. manag artificial wetlands, flood retent of these schemes essment and can define hydro | ion, | | | 10. | Learning outcomes | * Students have the capacity to analyse a basin in terms of available water resources and can assess the sustainability of current water uses. * Students are able to design and plan measures that improve current water management conditions towards reaching sustainability and improving ecosystem services by applying hydrological engineering * Students can plan and design hydrological engineering solutions that integrate into the environment taking into account the environmental impact of these measures | | | | | | 11. | Literature | * Maliva (2019) Anthropogenic Aquifer Recharge, Springer * Chicharro & Müller (2016) Ecosystem Services and River Basin Ecohydrology, Springer * Davie & Quinn (2019) Fundamentals of Hydrology, Routledge | | | | | | 1. | Simulation and Modeling II | | | | | | | |-----|-----------------------------|--|--|--|---------|--|--| | | Water Engineering Mas | | | | WEM1250 | | | | 2. | ECTS | 6 CP | 3. | Workload | 180 h | | | | | Semester hours per week | 4 SWS | | Presence hours | 60 h | | | | | Module type | Compulsory | | Self-study hours | 120 h | | | | 4. | Exam type | Project | | , | WEM1251 | | | | | Study achievements | yes (SL) | | | WEM1252 | | | | 5. | Participation prerequisites | | | | | | | | | | | | | | | | | 6. | Frequency | Summer semester | 7. | Form of learning | | | | | | Semester of studies | 2. Semester | | Lecture | X | | | | | Length (semesters) | 1 | | Excercise | | | | | | Teaching language | English | | Practical training | | | | | | Form of learning | Presence | | Project work | x | | | | | Module abbreviation | sim2 | | Seminar | | | | | | Responsible Lecturers | 1. Prof. DrIng. habil. M. Oertel (oer) | | Excursion | | | | | | | 2. Prof. Dr. rer. nat. C. Külls (kü) | | | | | | | | | * Properties of river systems, physical laws of motion and flow of surface water * Numerical modeling in hydraulic engineering, e.g. flood simulation or hydraulic structure design (fish steps, weirs) - 1D models - 2D depth averaged models - 3D CFD models * Parameter estimation * Discretisation, calibration, validation * Result analysis | | | | | | | 9. | Skills | * Deep understanding of hydraulic processes * Apply and use numerical surface water mod environmental questions * Estimate model parameters and the uncerta * Estimate and determine roughness influence * Fit models for steady and non-steady flow of * Calibrate models with available data sets * Create rating curves and head related disch | els
inty
es t | y of model results
for surface water flows
ditions | | | | | 10. | Learning outcomes | parameter estimation, model calibration, val
problems * Students can create flood maps and risk are * Students can design and analyze hydraulic * Students can analyze numerical model resu | * Students are able to develop complex numerical surface water models, including parameter estimation, model calibration, validation and application to non-steady problems * Students can create flood maps and risk areas for river flood areas * Students can design and analyze hydraulic structures via numerical models * Students can analyze numerical model results concerning structure's efficiencies * Students are able to apply, modify and validate analytical models | | | | | | 11. | Literature | Springer, Berlin Heidelberg New York | Wesseling,P. (2001) Principles of Computational Fluid Dynamics, Springer Series in | | | | | | 1. | Master Thesis | | | | | | | | | |-----|------------------------------|---|------|-----------------------------|---------|--|--|--|--| | | Water Engineering Mas | er (WEM) WEM6000 | | | | | | | | | 2. | ECTS | 27 CP | 3. | Workload | 810 h | | | | | | | Semester hours per week | 0 SWS | | Presence hours | 0 h | | | | | | | Module type | Compulsory | | Self-study hours | 810 h | | | | | | 4. | Exam type | Final thesis | | 25 weeks | WEM6000 | | | | | | | Study achievements | | | | | | | | | | 5. | Participation prerequisites | | | | | | | | | | | · artio.patiop. or oquio.ioo | | | | | | | | | | 6. | Frequency | Summer and winter semester 7. | | Form of learning | | | | | | | | Semester of studies | 4. Semester | | Lecture | | | | | | | | Length (semesters) | 25 weeks | | Excercise | | | | | | | | Teaching language | English | | Practical training | | | | | | | | Form of learning | Presence | | Project work | | | | | | | | Module abbreviation | | | Seminar | | | | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | | | | 2. Prof. DrIng. habil. M. Oertel (oer) | | | | | | | | | 8. | Knowledge | Students know techniques of scientific writing * master structuring of a scientific report * know citation rules * preparation of high-level scientific graphs * sound description of scientific methodology and research design * discussion of data and evidence based conclusions | | | | | | | | | 9. | Skills | Students will develop and demonstrate the skill to * apply water engineering and scientific methods to a research question * follow and apply principles of scientific methodology * solve applied problems of water engineering | | | | | | | | | 10. | Learning outcomes | Students are able to prepare a major scientifi | c re | port and work independently | | | | | | | 11. | Literature | * Gastel B., Day, R. (2016) How to Write and Publish a Scientific Paper, 8th Edition,
Greenwood; English, ISBN-10: 1440842809.
* Alley M. (2018) The Craft of Scientific Writing. Springer; 4th ed. ISBN-10: 1441982876 | | | | | | | | | 1. | Master Colloquium | | | | | | | | | |-----|-----------------------------|---|-----|--------------------|------------|--|--|--|--| | | Water Engineering Mas | | | | | | | | | | 2. | ECTS | 3 CP | 3. | Workload | 90 h | | | | | | | Semester hours per week | 0 SWS | | Presence hours | 0 h | | | | | | | Module type | Compulsory | | Self-study hours | 90 h | | | | | | 4. | Exam type | Final oral colloquium | | 45 min | WEM8000 | | | | | | ٦. | | i mai orai oonoquiam | | 10 111111 | 7721110000 | | | | | | 5. | Study achievements | | | | | | | | | | Э. | Participation prerequisites | | | | | | | | | | 6. | Frequency | Summer and winter semester | 7 | Form of learning | | | | | | | 0. | Semester of studies | 4. Semester | '·· | Lecture | | | | | | | | Length (semesters) | 45 min | | Excercise | | | | | | | | Teaching language | English | | Practical training | | | | | | | | Form of learning | Presence | | Project work | | | | | | | | Module abbreviation | Fieselice | | Seminar | | | | | | | | | 4 B 4 B 4 B 4 C 4 C 1 C 1 C 1 C 1 C
1 C 1 C 1 C 1 C | | | | | | | | | | Responsible Lecturers | 1. Prof. Dr. rer. nat. C. Külls (kü) | | Excursion | | | | | | | | Knowledge | Prof. DrIng. habil. M. Oertel (oer) Students know | | | | | | | | | | | * scientific presentation technqiues * free oral presentation of scientific data * discussion techniques for the defense of the presentation * communication techniques for scientific results | | | | | | | | | 9. | Skills | * Prepare high level scientific talks adapted to the audience * Synthesize and presents scientific findings adequately * Argue based on data and scientific results * Assess results and draw adequate conclusions | | | | | | | | | 10. | Learning outcomes | Students can * prepare abstracts, executive summaries * present their findings in a professional manner * talk to the audience with optimal presentation techniques, use of different media and good oral communication | | | | | | | | | 11. | Literature | * Anderson C. (2017) TED Talks: The Official TED Guide to Public Speaking. ISBN-13: 978-1328710284 (in combination with TED Talk playlist) * Alley M. (2011) The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid (Englisch). ISBN-13: 978-1441982780 | | | | | | | |