

Module: Signals and Systems

Level	Bachelor	Short Name	SigSys
Responsible Lecturers	Prof. Dr. Djahanyar Chahabadi, Prof. Dr. Ralph Hänsel		
Department, Facility	Electrical Engineering and Computer Science		
Course of Studies	Elektrotechnik - Kommunikationssysteme, Bachelor		
Compulsory/elective	Compulsory	ECTS Credit Points	5
Semester of Studies	5	Semester Hours per Week	4
Length (semesters)	1	Workload (hours)	150
Frequency	WiSe	Presence Hours	60
Teaching Language	English	Self-Study Hours	90

The following section is filled only if there is **exactly one** module-concluding exam.

•	· · · · ·	-	
Exam Type	Written Exam	Exam Language	English
Exam Length (minutes)	120	Exam Grading System	One-third Grades
Learning Outcomes	After completing this module, students should be familiar with the important elementary signals, such as being able to describe the of harmonic signals, the Dirac impulse and the unit step function, particularly often used in the signal and system theory. The hand mathematical analysis methods like Fourier series, Fourier transfer Laplace transformation should be mastered safely. The effect of sampling should be explained in the frequency domain by means sketch. Students learn the properties of linear and time-invariant (LTI systems) and methods for calculating the response of LTI systems and frequency domain to a given input signal. They should be to check the stability conditions in the time and frequency domain systems.		describe the propertie rep function, which ar y. The handling of the ourier transformation he effect of the in by means of a ne-invariant systems use of LTI systems in ney should be able
	function, amplitude a zero diagram. They k the different types of approximate an ideal It is shown how the o filter are formed by tr Finally, students lear	eside others the terms system fu and phase response, phase and g snow and can describe the ampli frequency-selective circuits and low-pass filter through a realiza ther filter types: high-pass, band ansforming the frequency axis o in the definition and properties of and power signals and can calcula lar pulses.	group delay and pole tude responses of the different ways to ble transfer function. lpass and band-stop f a low-pass filter. the autocorrelation

Participation Prerequisites

The previous section is filled only if there is **exactly one** module-concluding exam.

Consideration of Gender and Diversity Issues

- ✓ Use of gender-neutral language (THL standard)
- ✓ Target group specific adjustment of didactic methods

	 Making subject diversity visible (female researchers, cultures etc.)
Applicability	Recommended as a prior knowledge of the module Digital Signal Processing. Basis for control and communication technology.
Remarks	

Module Course: Signals and Systems (Lecture)

(of Module: Signals and Systems)

Course Type	Lecture	Form of Learning	Presence
Mandatory Attendance	no	ECTS Credit Points	5
Participation Limit		Semester Hours per Week	4
Group Size		Workload (hours)	150
Teaching Language	English	Presence Hours	60
Study Achievements Studienleistung", SL)		Self-Study Hours	90
SL Length (minutes)		SL Grading System	

Exam Type	Exam Language
Exam Length (minutes)	Exam Grading System
Learning Outcomes	
Participation Prerequisites	

The previous section is filled only if there is a course-specific exam.

Contents	1 Introduction	
	Basic Terminology: Message, Signal, Time Function, System	
	2 Signals	
	Classification of Signals	
	Fourier Series	
	Fourier Transform	
	Laplace Transform	
	Sampling	
	3 Systems	
	Classification of Systems	
	Response of a linear time-invariant system	
	Convolution	
	System Function	
	Systems without Distortion	
	Pole Zero Map	
	4 Filters	

	Overview of different Filter Types Filter Design, Butterworth, Chebyshev, Elliptic, Bessel Implementation Aspects Frequency transform 5 Autocorrelation function (ACF) ACF of power and energy signals and time and frequency domain Parsevals's Theorem
Literature	 Simon Haykin, Barry Van Veen, "Signals and Systems", Second Edition, Wiley, 2003, ISBN 0471-37851-8 Ziemer, Rodger E., "Signals and Systems: Continuous and Discrete", Prentice Hall, 4th edition, 1998, ISBN-10 013496456X, ISBN-13 978-0134964560 Ziemer, Rodger E., "Signals and Systems: Continuous and Discrete", Maxwell MacMillan International, New York, 1993, ISBN 0-02-431641-5 Hsu, "Signal and Systems, Schaums Outline", McGraw Hill, 2019, ISBN 978-1260454246
Remarks	