Module: Intermediate Mechanics of Materials | Level | Bachelor | Short Name | IMM | | |-----------------------------------|---|---|---|--| | Responsible Lecturers | Kral, Roland, Prof. DrIng. | | | | | Department, Facility | Mechanical Engineering and Business Administration | | | | | Course of Studies | Mechanical Engineer | ing, Bachelor | | | | Compulsory/elective | Compulsory | ECTS Credit Points | 4 | | | Semester of Studies | 5 | Semester Hours per Week | 4 | | | Length (semesters) | 1 | Workload (hours) | 120 | | | Frequency | WiSe | Presence Hours | 60 | | | Teaching Language | English | Self-Study Hours | 60 | | | he following section is filled on | ly if there is exactly or | ne module-concluding exam. | | | | Exam Type | Written Exam | Exam Language | English | | | Exam Length (minutes) | 120 | Exam Grading System | One-third Grades | | | | stress and strain are familiar with several failure criteria (static and dynamic) and are able to apply an appropriate criterion for a given material / stress state are able to calculate beam deflections using discontinuity functions or bending deflection tables know how to find solutions for thin-walled members under transvers loading know how to find solutions for thin-walled members under torsional loading are able to solve statically overdetermined problems are familiar with column design codes (steel, aluminium, and timber) and are able to design compression members are familiar with stress and strain/deflection measurements including the reduction of strain rosette data have completed design exercises in which iterations were required to find and acceptable solution. | | | | | Participation Prerequisites | are familiar wit are able to app stress state are able to calc functions or be know how to find transvers loadi know how to find torsional loadir are able to sole are familiar wit timber) and are are familiar wit including the re have complete required to find | h several failure criteria (static and ply an appropriate criterion for a graduate beam deflections using distributions deflection tables and solutions for thin-walled meming and solutions for thin-walled meming we statically overdetermined problem to the column design codes (steel, also able to design compression meth stress and strain/deflection method design exercises in which iterated | given material / scontinuity bers under bers under blems luminium, and embers easurements ations were | | The previous section is filled only if there is **exactly one** module-concluding exam. | Consideration of Gender and Diversity Issues | ✓ Use of gender-neutral language (THL standard) | | |--|--|--| | | Target group specific adjustment of didactic methods | | | | Making subject diversity visible (female researchers, cultures etc.) | | | Applicability | | | | Remarks | This course continues the study of the mechanics of deformable bodies. The theoretical background is enlarged by introducing the more general concepts of three dimensional stress/strain as well as energy methods. Failure theories allow to handle multi-axial loadings on deformable bodies. | | ## **Module Course: Intermediate Mechanics of Materials (lecture)** (of Module: Intermediate Mechanics of Materials) | Course Type | Lecture | Form of Learning | Presence | |--|--|--|--------------------| | Mandatory Attendance | no | ECTS Credit Points | 3 | | Participation Limit | | Semester Hours per Week | 3 | | Group Size | 12 | Workload (hours) | 90 | | Teaching Language | English | Presence Hours | 45 | | Study Achievements ("Studienleistung", SL) | | Self-Study Hours | 45 | | SL Length (minutes) | | SL Grading System | | | he following section is filled on | ly if there is a course | -specific exam. | 1 | | Exam Type | | Exam Language | | | Exam Length (minutes) | | Exam Grading System | | | Learning Outcomes | | | | | Participation Prerequisites | | | | | The previous section is filled onl | ly if there is a course | -specific exam. | | | | Review of fundamental mechanics of material topics Basic theory of elasticity Concept of stress Concept of strain Material laws Elastic strain energy Failure theories Selected topics of mechanics of materials including: Axial loads to members with varying cross-sections Curved beams Beam deflections Torsion in members with solid non-circular cross-sections Torsion in members with thin-walled, non-circular cross-sections Pressure vessels Statically overdetermined structures Introduction to energy methods Impact loadings Principle of virtual work Method of virtual forces Stability problems: Column design | | | | Literature | | lecture, to exercises and to labs f Materials, 4th edition or newer, H | libbeler, Prentice | | | Additional literature according to the list given out in class | |---------|--| | Remarks | | ## **Module Course: Intermediate Mechanics of Material (Practical Training)** (of Module: Intermediate Mechanics of Materials) | Course Type | Practical Training | Form of Learning | Presence | | |--|---|-------------------------|----------|--| | Mandatory Attendance | yes | ECTS Credit Points | 1 | | | Participation Limit | | Semester Hours per Week | 1 | | | Group Size | 6 | Workload (hours) | 30 | | | Teaching Language | English | Presence Hours | 15 | | | Study Achievements ("Studienleistung", SL) | (Flexible) | Self-Study Hours | 15 | | | SL Length (minutes) | | SL Grading System | Pass | | | The following section is filled on | ly if there is a course-s | specific exam. | | | | Exam Type | | Exam Language | | | | Exam Length (minutes) | | Exam Grading System | | | | Learning Outcomes | | | | | | Participation Prerequisites | | | | | | The previous section is filled on | y if there is a course-s | pecific exam. | | | | Contents | Lab 1: Stresses, strains and deflections in a beam Lab 2: Failure theories | | | | | | | | | | | | Lab 3: Torsion in shafts Lab 4: Buckling of columns | | | | | | | | | | | Literature | Notes to the lab experiments. | | | | | Remarks | I lab experiments are on an acceptable level with respect to content and format the practical training is passed. | | | |