Module: Modeling and Numerical Analysis | Level | Bachelor | Short Name | MNA | |--|--|---|--| | Responsible Lecturers | Kral, Roland, Prof. DrIng. | | | | Department, Facility | Mechanical Engineering and Business Administration | | | | Course of Studies | Mechanical Engineer | ring, Bachelor | | | Compulsory/elective | Compulsory | ECTS Credit Points | 4 | | Semester of Studies | 6 | Semester Hours per Week | 4 | | Length (semesters) | 1 | Workload (hours) | 120 | | Frequency | SuSe | Presence Hours | 60 | | Teaching Language | English | Self-Study Hours | 60 | | he following section is filled on | ly if there is exactly or | ne module-concluding exam. | | | Exam Type | Written Exam | Exam Language | English | | Exam Length (minutes) | 120 | Exam Grading System | One-third Grades | | Learning Outcomes | | erive the differential equations w | | | Learning Outcomes | know how to depend on the dynamics of the have learned to computer and | e by using the underlying physic
o implement the mathematical m
how hardware can be embedded
e important properties of nonline: | al laws
nodels on a
d | | Learning Outcomes Participation Prerequisites | know how to deduction dynamics of the dynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, | e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineates. | al laws
nodels on a
d
ar and linear | | Participation Prerequisites | know how to dedynamics of the dynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) | e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineans. II, and III are fundamentals of engineering (embedded) | al laws
nodels on a
d
ar and linear | | Participation Prerequisites The previous section is filled onl Consideration of Gender | know how to do dynamics of the have learned to computer and know about the dynamic system. Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on | e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineans. II, and III are fundamentals of engineering (embedded) | al laws
nodels on a
d
ar and linear | | Participation Prerequisites The previous section is filled only | know how to dedynamics of the dynamics of the have learned to computer and know about the dynamic system. Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne | e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlinears. II, and III are fundamentals of engineering (embedded in the module-concluding exam. | al laws nodels on a d ar and linear electric circuits, | | Participation Prerequisites The previous section is filled onl Consideration of Gender | know how to dedynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne Target group spe | e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlinears. II, and III are fundamentals of engineering (embedded embedded). Be module-concluding exam. | al laws nodels on a d ar and linear electric circuits, | | Participation Prerequisites The previous section is filled onl Consideration of Gender | know how to dedynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne Target group spe | e by using the underlying physic or implement the mathematical method hardware can be embedded important properties of nonlinearms. II, and III are fundamentals of engineering (embedded embedded) are module-concluding exam. Butral language (THL standard) cific adjustment of didactic method iversity visible (female researched) | al laws nodels on a d ar and linear electric circuits, | 1 01.07.2019 ## **Module Course: Modeling and Numerical Analysis (lecture)** (of Module: Modeling and Numerical Analysis) | Course Type | Lecture | Form of Learning | Presence | |--|-------------------------|-------------------------|----------| | Mandatory Attendance | no | ECTS Credit Points | 4 | | Participation Limit | | Semester Hours per Week | 4 | | Group Size | | Workload (hours) | 120 | | Teaching Language | English | Presence Hours | 60 | | Study Achievements ("Studienleistung", SL) | | Self-Study Hours | 60 | | SL Length (minutes) | | SL Grading System | | | The following section is filled on | ly if there is a course | e-specific exam. | | | Exam Type | | Exam Language | | | Exam Length (minutes) | | Exam Grading System | | | Learning Outcomes | | | 1 | | Participation Prerequisites | | | | The previous section is filled only if there is a course-specific exam. #### Contents #### Mathematical description of dynamic systems Nonlinear and linear systems of differential equations, simple technical examples, behavior of the solution, controlled and observed systems, equilibrium points and linearization #### Simulation of dynamic systems One step methods, discretization error and convergence, implementation with MATLAB, simulation with SIMULINK block diagrams, hardware in the loop #### Methods to derive a mathematical model - Mechanical systems: Bilances of forces and torques, equations of Euler-Lagrange – Examples: Spring-mass-damper system, pendulum, crane positioning system, anti blocking system - Thermal systems: Heat flow bilances Examples: Heating of a DC motor, heat exchanger, heating of a thin rod - Fluid systems: Mass flow bilances Examples: Pressure container, three-tank-system, hydraulic cylinder - Electric systems: Voltage and current bilances Examples: RLC circuit, RLC circuit with a non-linear resistor - Electromechanical system: DC motor - SIMULINK models for a selection of theses examples ### General properties of nonlinear systems 2 01.07.2019 | | Stability of nonlinear systems, Lyapunov functions, stability of linear systems, Lyapunov's indirect method, phase portraits, periodic solutions, limit cycles General properties of linear systems Solution formula, step response, frequency response, transfer functions, MATLAB tools Case study: Rotational pendulum (with laboratory experiment) Equations of motion, linearization, transfer functions, SIMULINK block diagram, set-up of the experiment, comparison of simulated and measured results. | |------------|--| | Literature | Handouts to lecture, to exercises and to labs Additional literature according to the list given out in class | | Remarks | | 3 01.07.2019