

Module: Modeling and Numerical Analysis

Level	Bachelor	Short Name	MNA
Responsible Lecturers	Kral, Roland, Prof. DrIng.		
Department, Facility	Mechanical Engineering and Business Administration		
Course of Studies	Mechanical Engineer	ring, Bachelor	
Compulsory/elective	Compulsory	ECTS Credit Points	4
Semester of Studies	6	Semester Hours per Week	4
Length (semesters)	1	Workload (hours)	120
Frequency	SuSe	Presence Hours	60
Teaching Language	English	Self-Study Hours	60
he following section is filled on	ly if there is exactly or	ne module-concluding exam.	
Exam Type	Written Exam	Exam Language	English
Exam Length (minutes)	120	Exam Grading System	One-third Grades
Learning Outcomes		erive the differential equations w	
Learning Outcomes	 know how to depend on the dynamics of the have learned to computer and 	e by using the underlying physic o implement the mathematical m how hardware can be embedded e important properties of nonline:	al laws nodels on a d
Learning Outcomes Participation Prerequisites	 know how to deduction dynamics of the dynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, 	e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineates.	al laws nodels on a d ar and linear
Participation Prerequisites	 know how to dedynamics of the dynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) 	e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineans. II, and III are fundamentals of engineering (embedded)	al laws nodels on a d ar and linear
Participation Prerequisites The previous section is filled onl Consideration of Gender	know how to do dynamics of the have learned to computer and know about the dynamic system. Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on	e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlineans. II, and III are fundamentals of engineering (embedded)	al laws nodels on a d ar and linear
Participation Prerequisites The previous section is filled only	 know how to dedynamics of the dynamics of the have learned to computer and know about the dynamic system. Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne 	e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlinears. II, and III are fundamentals of engineering (embedded in the module-concluding exam.	al laws nodels on a d ar and linear electric circuits,
Participation Prerequisites The previous section is filled onl Consideration of Gender	 know how to dedynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne Target group spe 	e by using the underlying physic o implement the mathematical method hardware can be embedded important properties of nonlinears. II, and III are fundamentals of engineering (embedded embedded). Be module-concluding exam.	al laws nodels on a d ar and linear electric circuits,
Participation Prerequisites The previous section is filled onl Consideration of Gender	 know how to dedynamics of the have learned to computer and know about the dynamic system Recommended are: Mathematics I, Courses on the etc.) y if there is exactly on Use of gender-ne Target group spe 	e by using the underlying physic or implement the mathematical method hardware can be embedded important properties of nonlinearms. II, and III are fundamentals of engineering (embedded embedded) are module-concluding exam. Butral language (THL standard) cific adjustment of didactic method iversity visible (female researched)	al laws nodels on a d ar and linear electric circuits,

1 01.07.2019

Module Course: Modeling and Numerical Analysis (lecture)

(of Module: Modeling and Numerical Analysis)

Course Type	Lecture	Form of Learning	Presence
Mandatory Attendance	no	ECTS Credit Points	4
Participation Limit		Semester Hours per Week	4
Group Size		Workload (hours)	120
Teaching Language	English	Presence Hours	60
Study Achievements ("Studienleistung", SL)		Self-Study Hours	60
SL Length (minutes)		SL Grading System	
The following section is filled on	ly if there is a course	e-specific exam.	
Exam Type		Exam Language	
Exam Length (minutes)		Exam Grading System	
Learning Outcomes			1
Participation Prerequisites			

The previous section is filled only if there is a course-specific exam.

Contents

Mathematical description of dynamic systems

 Nonlinear and linear systems of differential equations, simple technical examples, behavior of the solution, controlled and observed systems, equilibrium points and linearization

Simulation of dynamic systems

 One step methods, discretization error and convergence, implementation with MATLAB, simulation with SIMULINK block diagrams, hardware in the loop

Methods to derive a mathematical model

- Mechanical systems: Bilances of forces and torques, equations of Euler-Lagrange – Examples: Spring-mass-damper system, pendulum, crane positioning system, anti blocking system
- Thermal systems: Heat flow bilances Examples: Heating of a DC motor, heat exchanger, heating of a thin rod
- Fluid systems: Mass flow bilances Examples: Pressure container, three-tank-system, hydraulic cylinder
- Electric systems: Voltage and current bilances Examples: RLC circuit, RLC circuit with a non-linear resistor
- Electromechanical system: DC motor
- SIMULINK models for a selection of theses examples

General properties of nonlinear systems

2 01.07.2019

	 Stability of nonlinear systems, Lyapunov functions, stability of linear systems, Lyapunov's indirect method, phase portraits, periodic solutions, limit cycles General properties of linear systems Solution formula, step response, frequency response, transfer functions, MATLAB tools Case study: Rotational pendulum (with laboratory experiment) Equations of motion, linearization, transfer functions, SIMULINK block diagram, set-up of the experiment, comparison of simulated and measured results.
Literature	 Handouts to lecture, to exercises and to labs Additional literature according to the list given out in class
Remarks	

3 01.07.2019