\$	Studiengang: Program:	Bachelor of Science Maschinenbau Bachelor of Science in Mechanical Engineering			FACH HOCHSCHULE LÜBECK University of Applied Sciences
1	Modul: Module:	Kolbenmas Reciprocating	Deutsch German		
	iviodule.	Semester 5. Semester	Dauer Duration 1 Semester	Status Status Pflichtfach	Turnus Regular cycle iährlich
	Kreditpunkte Credits 5 ECTS	Aufwand Workload	Kontaktzeit Contact-hours 3 SWS = 45 h Vorlesung 1 SWS = 15 h Übung	Selbststudium Student's efforts 15 h Vor-/Nachbereitung 75 h Projektaufgabe	James

2 Beschreibung

Description

Diese Lehrveranstaltung vermittelt den Studierenden grundlegende Kenntnisse über den Aufbau, den thermodynamischen Prozess, die hauptsächlichen Motorvarianten von Otto- und Dieselmotoren und die Triebwerksdynamik. Dabei werden insbesondere die wärme- und strömungstechnischen Vorgänge im Motor behandelt. Auf die Problematik der Schadstoffemissionen von Verbrennungsmotoren und deren Reduktion wird ausführlich eingegangen.

3 Lernziele

Learning Outcomes

- Kenntnisse über Bauteile und Funktionsgruppen von Kolbenmaschinen
- Kenntnisse über den Arbeitsprozess im Verbrennungsmotor und Kompressor
- Kenntnisse über die Auswirkung von Parametervariationen auf Wirkungsgrad, Leistung und Schadstoffemission von Motoren
- Problematik der Schadstoffemissionen von Verbrennungsmotoren ist bekannt
- · Kenntnis über mögliche Verfahren zur Abgasreinigung
- Fähigkeit, aktuelle Entwicklungsansätze im Motorenbau zu verstehen und in ihrer Wirksamkeit einschätzen zu können
- Präsentation des Ergebnisses

4 Schlüsselqualifikationen

Key qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz
X	X	X		X

5 | Lehrveranstaltung/ -methoden

Course type and methods

Vorlesung

- Seminaristische Vorlesung im Hörsaal
- Bearbeiten und Diskussion von Fallbeispielen

Praktikum/Projekt

- Bearbeiten eines Semester-Projekts einzeln oder im Team
- Übung (Praktika und Rechenübungen) und Vorlesung bilden eine Einheit

6 Vorbedingungen / Vorkenntnisse

Prerequisites

keine

7 Arbeitsmittel / Literatur

Required material / Literature

- Skript zur Vorlesung
- Literatur It. der in der Veranstaltung ausgegebenen aktuellen Liste
- PC inkl. Software/Internetzugang im Hochschullabor
- Selbst programmierte Software zur Arbeitsprozessrechnung

Detailinformationen

^β Inhalte

Course topics

Einführung in das Lehrgebiet

Einteilung und Definition; Hauptbauteile und Funktionsgruppen; Kenngrößen und Kennfelder; Stand der Technik; Berechnung der Haupt-Abmessungen; Kinematik; Motorenanlagen; Ausführungsbeispiele

Thermodynamische Grundlagen

Seiliger-Vergleichsprozess; Verluste und Wirkungsgrad des realen Motors; Vergleichsprozesse für

Kolbenverdichter; Kreisprozess im Kolbenverdichter

Ladungswechsel und Steuerorgane

Ladungswechsel beim Viertaktmotor; Ladungswechsel beim Zweitaktmotor – Spülen; Ladungswechsel beim Kolbenverdichter

Aufladung von Verbrennungsmotoren

Mechanische Aufladung; Abgasturboaufladung; Zusammenspiel Lader und Motor; Sonderformen der Aufladung; Downsizing-Konzepte

Motorische Verbrennung

Kraftstoffe; Entflammung und Verbrennung von Kohlenwasserstoffen; Brennverlauf und Durchbrennfunktion; Gemischbildung und Verbrennung im Ottomotor; Gemischbildung und Verbrennung im Dieselmotor; Hybridmotoren, neuartige Brennverfahren

Schadstoffbildung und -reduzierung

Schadstoffbildungsreaktionen; Wirkung der Schadstoffe; Schadstoffgrenzwerte; primäre Maßnahmen zur Schadstoffreduzierung; sekundäre Maßnahmen zur Schadstoffreduzierung

Zukunft des Verbrennungsmotors

Praktika

Kennlinien und Betriebsverhalten eines Kompressors; Wirkungsgrad und Schadstoffverhalten eines Sechszylinder-Ottomotors; Energiebilanz an einem Otto-Gasmotor

9 Prüfungsform

Assessment

Prüfungsvorleistung: keine

Fachprüfung: Schriftliche Projektarbeit einzeln oder im Team bzw.

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

Erfolgreiches Bestehen der einzelnen Prüfungsteile gemäß Zeile 9 "Prüfungsform"

11 Weiterführende Veranstaltungen

Related courses

Kolbenmaschinen 2; Blockheizkraftwerke

12 Zuordnung

Classification

Mathematik & Naturwissenschaft	Ingenieur- wissenschaften	Ingenieur- anwendungen	Entwicklung & Konstruktion	Werkstoffe	Wirtschaft, Management, Sprachen	Anderes
	X	X	Χ			X

13 | Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr. Bartels / Prof. Dr. Bartels