•	Studiengang: Program:	Bachelor of So	FACH HOCHSCHULE LÜBECK University of Applied Sciences		
1		Mathemati	Deutsch		
	Module:	Mathematics 2	German		
		Semester Semester	Dauer Duration	Status Status	Turnus Regular cycle
		2. Semester	1 Semester	Pflichtfach	jährlich
	Kreditpunkte Credits	Aufwand Workload	Kontaktzeit Contact-hours	Selbststudium Student's efforts	
	5 ECTS	150h	4 SWS = 60h Vorlesung	30h Vor-/Nachbereitung 60h Übungen	

Beschreibung

Description

Aufbauend auf der vorlaufenden Lehrveranstaltung "Mathematik I" wird die Einführung der Studierenden in die Anfangsgründe der Mathematik und des mathematischen Denkens fortgesetzt. Bei der Auswahl des Stoffes stehen nach wie vor Teile der Mathematik im Vordergrund, die einen engen Bezug zu technisch-physikalischen Anwendungen haben. Einfache Beweise werden gelegentlich vorgetragen, um die Studenten an das mathematische Denken heranzuführen. Inhaltlich wird in dieser Lehrveranstaltung die analytische Behandlung von Funktionen mit mehreren Veränderlichen vorgestellt. Weitere Themenkreise betreffen die Vektoranalysis. sowie die linearen Gleichungssysteme und eine Einführung in das Matrizenkalkül.

Lernziele

Learning Outcomes

- Die Lösbarkeit und ggf. die Lösung von linearen Gleichungssystemen systematisch und methodisch unter zu Hilfenahme des Matrizenkalküls zu ermitteln
- Differenzialrechnung und Integralrechnung in Bezug auf Funktionen mit mehreren Variablen zu verstehen und ausführen zu können
- Differenzial- und Integralrechnung auf Vektoren zu übertragen und anwenden zu können.
- einfache mathematische Schlüsse ziehen zu können
- Standardmethoden der angewandten Mathematik auf Ingenieursprobleme anzuwenden.
- moderne Softwaretools (wie MATLAB) zur Lösung mathematisch-technischer Probleme sinnvoll nutzen zu können

Schlüsselqualifikationen Kev qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz
	Υ	Y		

Lehrveranstaltung/ -methoden

Course type and methods

Vorlesuna

- Interaktive Vorlesung
- Drill and practice

Vorbedingungen / Vorkenntnisse

Prerequisites

Dringend empfohlen:

Mathematik 1

Arbeitsmittel / Literatur

Required material / Literature

- Vorlesungsskript
- die einschlägigen Kapitel aus: Mayberg/Vachenauer: Höhere Mathematik 1, 2, Springer-Verlag
- die einschlägigen Kapitel aus: Papula, Mathematik für Ingenieure und Naturwissenschaftler 1, 2, 3, 4, Vieweg-Verlag
- Weiterführende Literatur laut der in der Vorlesung ausgegebenen aktuellen Liste
- Persönlicher oder hochschuleigener PC/Laptop

Detailinformationen

Inhalte

Course topics

Lineare Gleichungssysteme und Matrizen

Matrizen, lineare Gleichungssysteme, Gauß-Elimination, n-dimensionale Vektorräume, lineare Unabhängigkeit, Basis und Dimension, Skalarprodukt, Matrizen und lineare Abbildungen, Matrizenmultiplikation, Inverse einer Matrix, Determinanten, Eigenwerte, Eigenvektoren, Ähnlichkeit, Diagonalisierbarkeit

Differentialrechnung für Funktionen mehrerer Veränderlicher

Reellwertige Funktionen mehrerer Veränderlicher, Stetigkeit, partielle Ableitungen, Gradient, lineare Approximation, Richtungsableitung, Tangentialebene, Kettenregel, Fehlerrechnung, Newton-Verfahren, implizite Funktionen, Extremwerte, vektorwertige Funktionen, Jabcobi-Matrix

Integration über ebene und räumliche Bereiche

Parameterintegrale: Definition und wichtige Beispiele, Vertauschbarkeit der Integrationsreihenfolge, Integration über ebene Bereiche, Berechnung von Doppelintegralen, Integration über räumliche Bereiche, Berechnung von Dreifachintegralen, Transformationsformeln

Vektoranalysis

Kurven, Tangentialvektoren, Flächen, Vektorfelder (mit Beispielen aus der Physik), Kurvenintegrale, Arbeit und Spannung, Potential und Wegunabhängigkeit, Integrabilitätsbedingungen, zentrales Kraftfeld, Oberflächenintegrale, Fluß eines Vektorfeldes.

9 Prüfungsform

Assessment

Prüfungsvorleistung: Keine

Fachprüfung: Schriftliche Klausurarbeit

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

Erfolgreiches Bestehen der einzelnen Prüfungsteile gemäß Zeile 9 "Prüfungsform"

11 Weiterführende Veranstaltungen

Related courses

Mathematik 3

12 **Zuordnung**

Classification

Mathematik & Naturwissenschaft	Ingenieur- wissenschaften	Ingenieur- anwendungen	Entwicklung & Konstruktion	Werkstoffe	Wirschaft, Management, Sprachen	Anderes
Χ						

13 Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr. Mackenroth, Prof. Dr. Reddemann / Prof. Dr. Reddemann, Prof. Dr. Mackenroth