S	Studiengang: Bachelor of Science Maschinenbau Program: Bachelor of Science in Mechanical Engineering				FACH HOCHSCHULE LÜBECK University of Applied Sciences
1	Modul: <i>Module:</i>	Technisch	Deutsch German		
		Semester Semester 4. Semester	Dauer Duration 1 Semester	Status Status Pflichtfach	Turnus Regular cycle jährlich
	Kreditpunkte Credits 5 ECTS	Aufwand Workload 150 h	Kontaktzeit Contact-hours 3 SWS = 45 h Vorlesung 1 SWS = 15 h Labor	Selbststudium Student's efforts 50 h Vor-/Nachbereitung 40 h Labor-Protokolle	

2 Beschreibung

Description

Die Strömungsmechanik ist aufgrund der vielfältigen Anwendungsgebiete eines der Grundlagenfächer des Maschinenbaus. Die Vorlesung soll einen Überblick über die strömungsphysikalischen Grundlagen geben und der Student soll in die Lage versetzt werden mit Hilfe einer Modellbildung experimentelle Ergebnisse und Berechnungsmethoden auf technische Problemstellungen anzuwenden, wobei die dahinterliegende Physik verstanden werden soll und hierdurch die Anwendbarkeit und Grenzen des verwendeten Modells aufgezeigt werden soll. Das zugehörige Strömungslabor gibt einen Einblick in einige experimentelle Methoden und dient zur Veranschaulichung und zur Anwendung der Theorie in der Praxis.

3 | Lernziele

Learning Outcomes

- Berechnung und Verständnis von hydrostatischen Lasten und Auftriebsphänomenen
- Verständnis einiger Grundlagen zur Kinematik, Bilanzgleichungen, Reibungseffekten, Ähnlichkeit und Kennzahlen
- Verständnis und Anwendung des Modells der Stromfadentheorie
- Berechnung rohrhydraulischer und verwandter Systeme incl. physikalischem Verständnis für die auftretenden Phänomene
- Verständnis von grundlegenden Phänomenen bei der Umströmung von Körpern
- Kennenlernen und Anwendung grundlegender experimenteller Methoden der Strömungsmechanik

4 Schlüsselqualifikationen

Key qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz	
X	X	X		X	

5 Lehrveranstaltung/-methoden

Course type and methods

Vorlesung

- Seminaristische Vorlesung im Hörsaal
- Anwendung der Berechnungsmethoden anhand von Übungsaufgaben

Praktikum/Projekt

- · Versuche zur Rohrhydraulik
- Versuche zur Umströmung von Körpern

6 Vorbedingungen / Vorkenntnisse

Prerequisites

Vorkenntnisse sollten aus folgenden Bereichen sollten vorhanden sein

- Mathematik (mehrdimensionale Integrale, Differentialrechnung, partielle Differentialgleichungen)
- Thermodynamik (Zustandsgrößen, Entropie, Stoffgleichungen)
- Grundkenntnisse in Mechanik (Kräftegleichgewichte, Punktmechanik)

7 Arbeitsmittel / Literatur

Required material / Literature

- Literatur laut in der Vorlesung empfohlener Bücher
- Ergänzungsblätter
- Aufgabenblätter
- Skript zum Praktikum

De	etailinformationen								
8	Inhalte Course topics Pysikalische Grundlagen und Eigenschaften der Fluide Ruhende Fluide Grundlagen der Fluiddynamik Eindimensionale Stromfadentheorie Rohrhydraulik und verwandte Themen Umströmung von Körpern								
9	Prüfungst Assessmen Prüfungsvorleist Fachprüfung:								
10									
11	Weiterführende Veranstaltungen Related courses Strömungsmaschinen I, II, Windkraftanlagen, CFD								
12	Zuordnun Classificatio Mathematik & Naturwissenschaft	g	Ingenieur- anwendungen	Entwicklung & Konstruktion	Werkstoffe	Wirschaft, Management, Sprachen	Anderes X		
13	Modulbea Responsible		Lehrperson ers	en					