FACH HOCHSCHULE Studiengang: Bachelor of Science Maschinenbau HOCHSU LÜBECK Program: Bachelor of Science in Mechanical Engineering University of Applied Scien **English Module: Vibration Control** Modul: Maschinendynamik English Semester Dauer Status Turnus Semester Duration Status Regular cycle 6. semester 1 semester compulsory annually Kreditpunkte Aufwand Kontaktzeit Selbststudium Gruppengröße Credits Workload Contact-hours Student's efforts Team size 4 ECTS 150h 4SWS = 60h lectures 30h pre-/post-preparation < 25 (lecture)

2 Beschreibung

Description

This course gives an introduction to mechanical vibrations, to free and forced vibrations of different mechanical systems. Various types of forcing functions are considered/investigated for both damped and undamped systems. Aspects of measuring and controlling vibrations are also considered.

60h exercises

3 Lernziele

Learning Outcomes

- model simple vibratory systems.
- determine equations of motion for idealized systems.
- solve equations of motion for single degree of freedom systems subject to harmonic, general periodic and arbitrary forcing functions.
- write equations of motion for idealized multi-degree of freedom systems.
- determine natural frequencies and mode shapes for systems with two and three degrees of freedom.
- estabilish technical measures to handle vibrations in mechanical systems as desired.
- · be able to identify and estimate system parameters for lumped parameter systems

4 Schlüsselqualifikationen

Key qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz
Χ	X	X		

5 | Lehrveranstaltung/ -methoden

Course type and methods

Vorlesung / Lectures

- · Lectures, that will take form of seminars
- Drill and practice
- Demonstration of various kinds of vibration measurements within lab

Praktikum/Projekt / Lab

 Lecturing will be accompanied by introducing students to using a Multi-Body-Simulation-Software and solving various tasks of different skill-levels

6 Vorbedingungen / Vorkenntnisse

Prerequisites

Strongly recommended

- Basics of dynamics
- Integral and differential calculus, including differential equations as well as systems of differential equations

7 Arbeitsmittel / Literatur

Required material / Literature

- Handouts to lecture and to exercises
- Schaum's series: Mechanical Vibrations S.G. Kelly, McGraw Hill,
- Fundamentals of Mechanical Vibrations S.G. Kelly, McGraw Hill Higher Education
- Recommended supplementary literature according to handout to lecture

Detailinformationen

∃Inhalte

Course topics

Vorlesung / Lecture

Review: Modeling mechanical systems

Review: Solving differential equations - analytical, numerical methods

Systems with one degree of freedom

Free vibration.

Harmonic excited vibrations Fourier series, periodic functions

Transient vibrations

Systems with two or more degrees of freedom

Derivation of governing equations

Free vibrations

Forced vibrations

Vibration Measurement and Analysis

Vibration Control

Introduction to Vibrations of continuous systems

9 Prüfungsform

Assessment

Prüfungsvorleistung / Prerequisite: none Fachprüfung / Examination: written test

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

Successfully passing all individual parts of the examination according to row 9 "Assessment"

11 Stellenwert der Note in der Endnote

Meaning of the mark concerning final exam

Anteilig / proportionally: 5/240

12 Weiterführende Veranstaltungen

Related courses

Senior design project (4-th year at MSOE)

13 Bezug zu Zielen des Studiengangs

Related objectives of the study program / Outcomes

- The goal is to produce mechanical engineering graduates with a strong theoretical and applications background, whose analytical, design and laboratory experiences make them attractive to industry
- (1) The student will have a knowledge of and an ability to apply multivariable calculus, differential equations, linear algebra, and statistical methods to the solution of engineering problems.
- (2) The student will have a knowledge of and an ability to apply principles of chemistry and calculus-based physics to mechanical engineering systems.
- (3) The student will have an ability to function within a laboratory, including the abilities to plan and execute structured experiments, and to analyze and interpret data.
- (5) The student will have the ability to identify, formulate, model and solve engineering problems.

14 Zuordnung

Classification

Mathematik & Naturwissenschaft	Ingenieur- wissenschaften	Ingenieur- anwendungen	Entwicklung & Konstruktion	Werkstoffe	Wirschaft, Management, Sprachen	Anderes
	Х	Χ	Χ			

15 Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr.-Ing. Hans Reddemann / Prof. Dr.-Ing. Hans Reddemann