

Module: Mechanics of Solids

Level	Master	Short Name	MeSo
Responsible Lecturers	Schieck, Berthold, Prof. DrIng.		
Department, Facility	Mechanical Engineering and Business Administration		
Course of Studies	Mechanical Engineering, Master		
Compulsory/elective	Elective	ECTS Credit Points	5
Semester of Studies	1	Semester Hours per Week	4
Length (semesters)	1	Workload (hours)	150
Frequency	WiSe	Presence Hours	60
Teaching Language	English	Self-Study Hours	90
The following section is filled on	ly if there is exactly or	ne module-concluding exam.	
Exam Type	Written Exam	Exam Language	English
Exam Length (minutes)	120	Exam Grading System	One-third Grades
Learning Outcomes	The students know the basics of the mechanics of solids, suitable to finite large deformations in non-Euclidean geometry suitable for bodies with curved geometry undergoing large deformations. This course is currently not selectable.		
Participation Prerequisites			
The previous section is filled on	ly if there is exactly on	e module-concluding exam.	
Consideration of Gender and Diversity Issues	 Use of gender-neutral language (THL standard) 		
	 X Target group specific adjustment of didactic methods 		
	 Making subject diversity visible (female researchers, cultures etc.) 		
	🔀 Making subject di	versity visible (female researche	rs, cultures etc.)
Applicability		versity visible (female researche Topics of the Finite Element Me	,

Module Course: Mechanics of Solids

(of Module: Mechanics of Solids)

Course Type	Lecture	Form of Learning	Presence
Mandatory Attendance	no	ECTS Credit Points	5
Participation Limit		Semester Hours per Week	4
Group Size		Workload (hours)	150
Teaching Language	English	Presence Hours	60
Study Achievements ("Studienleistung", SL)		Self-Study Hours	90
SL Length (minutes)		SL Grading System	
The following section is filled on	ly if there is a course-s	pecific exam.	·
Exam Type		Exam Language	
Exam Length (minutes)		Exam Grading System	
Learning Outcomes			
Participation Prerequisites			
The previous section is filled onl	y if there is a course-s	pecific exam.	
Contents	Tensor calculus in Riemannian manifolds		
	Differential calculus of tensors in Riemannian manifolds		
	Polar decomposition of the deformation gradient		
	Lagrangean and Eulerian setting		
	Strain tensors for finitely large deformations		
	Stress tensors		
	Pull back and push forward		
	Balance of linear and angular momentum		
	Objectivity: frame indifference, spatial covariance, objective rates		
	Isotropic elastic and nonlinear elastic material		
	The principles of virtual work and minimum of total potential		
Literature	Textbooks:		
	A. Bertram: Elasticity and plasticity of large deformations. An introduction Springer, Berlin, Heidelberg, 2005		
	G.E. Mase, G.T. Mase: Continuum mechanics for engineers. London: CRO Press, 1991		
		duction to continuum mechanics ring vol. 158, Academic Press, Ir	

	J. Altenbach, H. Altenbach: Einführung in die Kontinuumsmechanik. Stuttgart: Teubner, 1984
	Some recently published papers:
	C. Miehe: A constitutive frame of elastoplasticity at large strains based on the notion of the plastic metric. Int. J. Solids Structures vol. 35.30 (1998), pp. 3859-3897.
	B. Schieck, H. Stumpf: The appropriate corotational rate, exact formula for the plastic spin and constitutive model for finite elastoplasticity. Int. J. Solids Structures vol. 32.24 (1995), pp. 3643-3667.
	B. Schieck, W. Smolenski, H. Stumpf: A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variational principle. Int. J. Solids Structures vol. 36 (1999), pp. 5399-5424. Part II: Constitutive equations and numerical applications. Int. J. Solids Structures vol. 36 (1999), pp. 5425-5451.
Remarks	The present course would be a good preparation for a PhD study of topics that are related to mechanics at a scientific university.