

Module: Selected Topics in Engineering Mathematics

Level	Master	Short Name	SeToMa
Responsible Lecturers	Kral, Roland, Prof. DrIng.		
Department, Facility	Mechanical Engineering and Business Administration		
Course of Studies	Mechanical Engineering, Master		
Compulsory/elective	Compulsory	ECTS Credit Points	5
Semester of Studies	1	Semester Hours per Week	4
Length (semesters)	1	Workload (hours)	150
Frequency	SuSe and WiSe	Presence Hours	60
Teaching Language	English	Self-Study Hours	90
The following section is filled on	ly if there is exactly on	e module-concluding exam.	
Exam Type	Written Exam	Exam Language	English
Exam Length (minutes)	120	Exam Grading System	One-third Grades
Learning Outcomes	 understand ma to apply advan- problems. to solve individ like MATLAB 	bletion of this course, the studen thematical proofs ced mathematical methods to er ual problems with the aid moder d analyze the behavior of dynam	ngineering n software tools
Participation Prerequisites	Mathematics I, II, III (Bachelor Level)		
The previous section is filled onl	y if there is exactly on	e module-concluding exam.	
Consideration of Gender and Diversity Issues	 Use of gender-neutral language (THL standard) Target group specific adjustment of didactic methods Making subject diversity visible (female researchers, cultures etc.) 		
	will be used in other courses like Simulation and Control, Selected Topics of Finite Element Methods, Mechanics of Solids, Toolbox for Fluid Mechanical Design.		
Applicability	Topics of Finite Elem		ds, Toolbox for Flu

Module Course: Selected Topics in Engineering Mathematics (Lecture)

(of Module: Selected Topics in Engineering Mathematics)

Course Type	Lecture	Form of Learning	Presence
Mandatory Attendance	no	ECTS Credit Points	5
Participation Limit		Semester Hours per Week	4
Group Size		Workload (hours)	150
Teaching Language	English	Presence Hours	60
Study Achievements ("Studienleistung", SL)		Self-Study Hours	90
SL Length (minutes)		SL Grading System	

Exam Type	Exam Language
Exam Length (minutes)	Exam Grading System
Learning Outcomes	

Participation Prerequisites

The previous section is filled only if there is a course-specific exam.

Contents	Linear Algebra:	
	Bases, change of base, orthogonal, unitary symmetric and positive definite matrices, rotations, eigenvalues and eigenvectors, normal form or Schur, principle vectors, Theorem of Cayley-Hamilton, block-diagonal normal form	
	Linear Differential Equations (ODEs):	
	Matrix exponential function, linear differential equation of order n, solution for linear system, stability	
	Boundary Value and Eigenvalue Problems:	
	Fundamental matrices, linear boundary value problem for systems of differential equations, linear boundary value problems for differential equations of order n, Green functions, eigenvalue problems	
	Partial Differential Equations (PDEs):	
	Basic definitions and introductory examples, DPEs of order 2, classification separation of variables, vibrating string, heat transfer, problem of Dirichlet, solution with Green's functions	
Literature	 Kreyszig, Erwin: Advanced Engineering Mathematics, Wiley & Sons 	

	 Shima/Nakuyama: Higher Mathematics for Physics and Engineering, Berlin: Springer-Verlag Mayberg/Vachenauer: Höhere Mathematik 1, 2: Berling: Springer- Verlag
Remarks	