Module: Polymer Science | Level | Master | Short Name | PSci | | | |-----------------------------------|---|----------------------------|------------------|--|--| | Responsible Lecturers | Prof. DrIng. Olaf Jacobs | | | | | | Department, Facility | Mechanical Engineering and Business Administration | | | | | | Course of Studies | Mechanical Engineering, Master | | | | | | Compulsory/elective | Compulsory | ECTS Credit Points | 5 | | | | Semester of Studies | 2 | Semester Hours per Week | 4 | | | | Length (semesters) | 1 | Workload (hours) | 150 | | | | Frequency | WiSe | Presence Hours | 60 | | | | Teaching Language | English | Self-Study Hours | 90 | | | | he following section is filled on | ly if there is exactly or | ne module-concluding exam. | | | | | Exam Type | Written Exam | Exam Language | English | | | | Exam Length (minutes) | 120 | Exam Grading System | One-third Grades | | | | | The students will be able to describe the different types of polymerisation reactions and to assign typical plastics to the according polymerisation types, distinguish thermoplastics, thermosets, elastomers, and TPEs with respect of structure, processing and usage properties and to select among these material families for practical applications, describe the most common representatives of the aforementioned polymer families with respect to structure, processing and usage properties and to specify typical advantages and shortcomings, name typical additives for polymers, explain their effect on the material properties, and describe the most common compounding methods, describe qualitatively and mathematically the mechanical (nonlinear elasticity, creep, visco-elasticity), physical (dielectricity, interaction with radiation), thermal (transitions, solidification and melting), thermo-mechanical (DMTA, residual stresses from processing), and chemical (oxidation, soaking) peculiarities of polymeric materials, describe and explain typical testing and analysis procedures for polymers, describe and explain processing effects on the performance of polymers and plastic products, describe the most common processing methods (injection moulding, extrusion, thermoforming) and common derivatives of them. | | | | | | Participation Prerequisites | | | | | | | - a. norpation / roroquiolico | | | | | | 1 The previous section is filled only if there is **exactly one** module-concluding exam. 01.07.2019 | Consideration of Gender and Diversity Issues | Use of gender-neutral language (THL standard) Target group specific adjustment of didactic methods Making subject diversity visible (female researchers, cultures etc.) | | | |--|---|--|--| | Applicability | Composite Materials MSc thesis | | | | | | | | | Remarks | | | | 2 01.07.2019 # **Module Course: Polymer Science (Lecture)** (of Module: Polymer Science) | Course Type | Lecture | Form of Learning | Presence | |--|---------------------------|-------------------------|----------| | Mandatory Attendance | no | ECTS Credit Points | 5 | | Participation Limit | | Semester Hours per Week | 4 | | Group Size | | Workload (hours) | 150 | | Teaching Language | English | Presence Hours | 60 | | Study Achievements ("Studienleistung", SL) | | Self-Study Hours | 90 | | SL Length (minutes) | | SL Grading System | | | The following section is filled on | ly if there is a course-s | specific exam. | | | Exam Type | | Exam Language | | | Exam Length (minutes) | | Exam Grading System | | | Learning Outcomes | | | | | Participation Prerequisites | | | | The previous section is filled only if there is a course-specific exam. #### Contents ### **Polymerisation** - carbon atom and its bonds (single, double, triple, steric structure) - radical chain polymeriosation, ionic chain polymeriosation, step reaction, polycondensation, ring opening polymerisation - catalysts and their effect on the chain structure (Zigler-Natta, metallocene) - · degree of polymerisation, molar mass and their measurement - · branching ratio ## Structure property relationship - constitution (dipoles, voluminous side groups, rigid back bone segments) - configuration (tacticity) - crystallisation and crystallinity (effect of molecular structure), structural anisotropy and anisotropic properties - copolymers (block, random, grafting) # Compounding - Additives and their effect (fillers, reinforcements, plasifiers, lubricants, release agents, stabelisers etc.) - dispersion and homogenisation # Rheology of polymers - Newtoneon and non-Newtoneon fluids, power law, shear thinning, Carreau equation - flow induced anisotropy 3 01.07.2019 measurement methods: viscosimeters, MVR/MFR, high pressure capillary rheometer ## Thermal properties of polymers - phase transitions: molecular processes, mathematical models - solidification of melts, shrinkage, skin-core morphology in injection moulded parts ## Mechanicel properties of polymers - viscoelasticity: energy elasticity, entropy elasticity, creep/ relaxation; molecular processes, mathematical models, relaxation time - cyclic loading: DMA, effect of temperature and frequency, time/ temperature transformations, master curves, Arrhenius and WLF transformation - stress-strain behaviour, creep curves and creep modulous ## **Electrical properties of polymers** - Condution mechanisms in polymer compounds, percolation, antistatic compounds - Dielectric constant, polarisation mechanisms, frequency effect, practical relevance (capacitors, HF welding, absorption of electromagnetic waves) ### **Environmental effects** - Diffusion processes in polymers, barrier properties. - Chemical interaction with media, oxidation, surface activation - Physikal interaction, soaking, softening and internal stresses - Radiation and thermal effects: radiation induced processes, aging, radiation curing/crosslinking, stabelisers and activators - Accelerated aging, testing methods and correlation with reality. Arrhenius relation # **Polymer Processing and Recycling** - Injection Moulding and derivates, extrusion and derivates, thermoforming and derivates, - Differences between thermoplastics, thermostets, and elastomers. - Material recycling, recycling to resources, thermal recycling: Practical examples, state of the art and trends. ### Literature - Jacobs. O.: Polymer Science, lecture notes, FH Lübeck - updated textbook list will be supplied at the beginning of the semester #### Remarks 4 01.07.2019