\circ			Science Maschinenbau nce in Mechanical Engineering		FACH HOCHSCHULE LÜBECK University of Applied Sciences
1	Modul: Module:	Composite Verbundwerks	English Englissh		
	Fach-Nr. Course number	Semester Semester	Dauer Duration	Status Status	Turnus Regular cycle
		2. Semester	1 Semester	elective	annual
	Kreditpunkte Credits	Aufwand Workload	Kontaktzeit Contact-hours	Selbststudium Student's efforts	
	5 ECTS	150hrs	4hrs/week = 60h lecture	30hrs exam preparation	
				30hrs cont. preparation and exercises	
				30hrs Self-study	

2 | Beschreibung

Description

Composite materials are increasingly used in mechanical and system engineering design. However, designing with composite materials is quite different from designing with conventional materials: The composite materials and their property profiles have to be tailored to the according application and the processing technologies are quite different from other materials.

3 Lernziele

Learning Outcomes

- · The student will be able to choose the most suitable fibre type among the available fibres for certain practical applications,
- to select the most suitable matrix material,
- and the most suitable preform and processing method.
- The student will be able to derive the in-plane properties of laminates (elastic behaviour, strength, thermal expansion coefficient, internal thermal stresses) from simple fibre and matrix data and to tailor laminate properties to external loads.

4 Schlüsselqualifikationen

Key qualifications

Sozialkompetenz Social Competence	Methodenkompetenz Competence in Methods	Selbstkompetenz / Personenkompetenz Self-Competence Personal Competence	Interkulturelle Kompetenz Intercultural Competence	Medienkompetenz Media-Competence
	X	X		

5 Lehrveranstaltung/ -methoden

Course type and methods

Lecture

- Seminar-like teaching
- Exercises and examples (case studies)

6 Vorbedingungen / Vorkenntnisse

Prerequisites

- Basic knowledge of polymers and polymer processing
- Good understanding of material mechanics and stress distributions

7 | Arbeitsmittel / Literatur

Required material / Literature

- O. Jacobs, Composite Materials, Manuscript, FH Lübeck
- D. Hull, An introduction to composite materials, Cambridge Univ. Press
- R.F. Gibson, Principles of Composite Materials Mechanics, McGraw Hill
- A. Kelly, C. Zweben (eds.), Comprehensive Composirte Materials, Vol. 1-6, Elsevier, Amsterdam et al.

Detailinformationen

^β Inhalte

Course topics

Introduction

- Technical and economic significance of composite materials,
- typical applications and problems,
- overview: classification of composite materials

Fibres and matrices

- CF, GF, AF, other synthetic and natural fibres: structures and properties, selection rules
- Thermoplastics, thermosets, elastomeres: properties and processing, selection rules
- Tayloring of interfaces: internal stresses, adhesion, coupling agents

Processing of polymer composites

- Textile processing of fibres (knitting, brading, weaving, stiching etc.), semi-finished products (pultrusion, prepregs, textile preforms,...), manufacturing of composite components (lamination, RTM, filament winding etc.).
- Effects of processing method on mechanical properties
- Processing of short fibre reinforced polymers and resulting microstructures (anisotropy)

Micromechanics

- Fibre/matrix interaction, rules of mixture, internal stresses,
- Properties of UD laminae and of textile preforms

Calculation of laminate properties

- Network theory, calculation of optimal fibre orientations, symmetry considerations
- Laminate theory: calculation of elastic constants and strength of laminates, laminates under stress (stress distribution, interaction of laminae), hygrothermal stresses and their effects on laminate properties
- Stresses at edges: FEM

Failure mechanisms in fiborous laminates

- Failure modes under static loading: fibre matrix debonding, matrix cracking, fibre fracture, delamination
- Damage development under cyclic stresses
- Failure criteria and calculation of laminate failure

Designing with composite materials

- Tailoring of material properties to loadings
- Joining of composites
- Design to manufacture rules

Practice

- Laboratory: Production and testing of RTM specimens, anisotropy of injection moulded parts
- Visit at a company

9 Prüfungsform

Assessment

Written exam at the end of the term: 2 hours

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

Successful passing of exam

11 | Weiterführende Veranstaltungen

Related courses

Master Thesis

12 **Zuordnung**

	٠	ພອ	
Ch	ccifi	cation	

Oldodinodion						
Mathematik & Naturwissenschaft Mathematics & Natural Sciences	Ingenieur- wissenschaften Engineering Science	Ingenieur- anwendungen Engineering Application	Entwicklung & Konstruktion <i>Design</i>	Werkstoffe <i>Material</i>	Wirtschaft, Management, Sprachen General Education	Anderes Other
X	X	Χ	Χ	Χ		

13 | Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr. Jacobs/ Prof. Dr. Jacobs