Studiengang: Program:			Master of Scie	FACH HOCHSCHULE LÜBECK University of Applied Sciences		
•	1	Module: Modul:	English Englisch			
		Fach-Nr. Course number	Semester Semester	Dauer Duration	Status Status	Turnus Regular cycle
			2. Semester	1 Semester	compulsory elective	annual
		Kreditpunkte Credits	Aufwand Workload	Kontaktzeit Contact-hours	Selbststudium Student's efforts	
		5 ECTS 150hrs	4 hrs/week = 60 hrs	30hrs exam preparation		
				lecture	30hrs cont. preparation and exercises	
					30hrs Self-study	

2 **Beschreibung**

Description

Polymeric materials are increasingly used as structural materials in engineering design. Polymers, however, have a completely different behaviour than metals. These peculiarities of the polymeric materials have to be carefully considered during the design process in order to fully utilise the benefits of polymers and to compensate the shortcomings. This lecture will introduce into the chemistry, physics and mechanics of polymers on a scientific level. Recent developments in the fields of polymeric materials and polymer processing will be discussed.

Lernziele

Learning Outcomes

The students will be able to

- describe the different types of polymerisation reactions and to assign typical plastics to the according polymerisation types,
- · distinguish thermoplastics, thermosets, elastomers, LCPs and TPEs with respect of structure, processing and usage properties and to select among these material families for practical applications,
- describe the most common representatives of the aforementioned polymer families with respect to structure, processing and usage properties and to specify typical advantages and shortcomings,
- name typical additives for polymers, explain their effect on the material properties, and describe the most common compounding methods,
- describe qualitatively and mathematically the mechanical (non-linear elasticity, creep, visco-elasticity), physical (dielectricity, interaction with radiation), thermal (transitions, solidification and melting), thermo-mechanical (DMTA, residual stresses from processing), and chemical (oxidation, soaking) peculiarities of polymeric materials,
- describe and explain typical testing procedures for polymers,
- · describe and explain processing effects on the performance of polymers and plastic products,
- describe the most common processing methods (injection moulding, extrusion, thermoforming) and common derivates of them.

Schlüsselqualifikationen Kev qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz
	X	X		

Lehrveranstaltung/-methoden

Course type and methods

Lecture

- · Seminar-like teaching
- · Exercises and examples (case studies)
- Drill and practice

Vorbedingungen / Vorkenntnisse 6

Prerequisites

basic knowledge about plastics and their application

7 Arbeitsmittel / Literatur

Required material / Literature

- Jacobs, O.: Polymer Science, lecture notes, FH Lübeck
- updated textbook list will be supplied at the beginning of the semester

Detailinformationen

8 Inhalte

Course topics

Polymerisation

carbon atom and its bonds (single, double, triple, steric structure)

radical chain polymeriosation, ionic chain polymeriosation, step reaction, polycondensation, ring opening polymerisation catalysts and their effect on the chain structure (Zigler-Natta, metallocene)

degree of polymerisation, molar mass and their measurement

branching ratio

Structure property relation

constitution (dipoles, voluminous side groups, rigid back bone segments)

configuration (tacticity)

crystallisation and crystallinity (effect of molecular structure), structural anisotropy and anisotropic properties copolymers (block, random, grafting)

Compounding

Additives and their effect (fillers, reinforcements, plasifiers, lubricants, release agents, stabelisers etc.) dispersion and homogenisation

Rheology of polymers

Newtoneon and non-Newtoneon fluids, power law, shear thinning

flow induced anisotropy

measurement methods: viscosimeters, MVR/MFR, high pressure capillary rheometer

Thermal properties of polymers

phase transitions: molecular processes, mathematical models

solidification of melts, shrinkage, skin-core morphology in injection moulded parts

Mechanicel properties of polymers

viscoelasticity: energy elasticity, entropy elasticity, creep/relaxation; molecular processes, mathematical models cyclic loading: DMA, effect of temperature and frequency, time/temperature transformations, master curves stress-strain behaviour, creep curves and creep modulous

Electrical properties of polymers

Condution mechanisms in polymer compounds, percolation, anti-static compounds

Dielectric constant, polarisation mechanisms, frequency effect, practical relevance (capacitors, HF welding, absorption of electromagnetic waves)

Environmental effects

Diffusion processes in polymers, barrier properties,

Chemical interaction with media, oxidation, surface activation

Physikal interaction, soaking, softening and internal stresses

Radiation effects: radiation induced processes, aging, radiation curing/crosslinking, stabelisers and activators

Polymer Processing and Recycling

Injection Moulding and derivates, extrusion and derivates, thermoforming and derivates,

Differences between thermoplastics, thermostets, and elastomers,

Material recycling, recycling to resources, thermal recycling: Practical examples, state of the art and trends

9 Prüfungsform

Assessment

Written examination at the end of the term: 2 hours.

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

Successful passing of exam

11 Weiterführende Veranstaltungen

Related courses

Composite Materials

12 Zuordnung

Classification

Mathematik &	Ingenieur-	Ingenieur-	Entwicklung &	Werkstoffe	Wirschaft, Management, Sprachen	Anderes
Naturwissenschaft	wissenschaften	anwendungen	Konstruktion			
Υ	Χ	Υ		X		

13 | Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr. O. Jacobs/ Prof. Dr. O. Jacobs