;	Studiengang: Program:				FACH HOCHSCHULE LÜBECK University of Applied Sciences
1	Modul: Verbundwerkstoffe 1 und Nichteisenmetalle Module: Composite Materials and Non-Ferrous Alloys				Deutsch German
		Semester Semester 6. Semester	Dauer Duration 1 Semester	Status Status Pflichtfach	Turnus Regular cycle jährlich
	Kreditpunkte Credits 5 ECTS	Aufwand Workload	Kontaktzeit Contact-hours 3 SWS = 45 h Vorlesung	Selbststudium Student's efforts 30 h Vor-/Nachbereitung	
			1 SWS = 15 h Übung/Praktikum	30 h Übungen/Praktikum 30 h Prüfungsvorbereitung	

2 Beschreibung

Description

Die Veranstaltung vermittelt Übersichtswissen über Verbundwerkstoffe und Nichteisenmetalle (v.a. Leichtmetalle). Werkstoffkomponenten und –aufbau sowie Eigenschaften und Einsatzgebiete werden behandelt. Typische Verarbeitungsverfahren und Einsatzgebiete (besonders im Leichtbau) werden vorgestellt und diskutiert.

3 Lernziele

Learning Outcomes

Die Studierenden sollen

- verschiedene Arten von Polymer-Verbundwerkstoffen benennen und typische Einsatzgebiete dafür angeben können,
- geeignete Matrizes, Faserarten, Halbzeugformen und Verarbeitungsverfahren für bestimmte Anwendungsgebiete von Polymer-Verbundwerkstoffen auswählen und die Eigenschaften der Verbunde abschätzend vorhersagen können,
- typische Fertigungsfehler und Versagensarten von FVK sowie Abhilfemaßnahmen benennen und erläutern können,
- typische Pr

 üfverfahren f

 ür FVK benennen und erl

 äutern k

 önnen,
- die gängigen Nichteisenmetalle kennen und die gezielte Eigenschaftsbeeinflussung mittels Legieren erläutern können,
- den Zusammenhang zwischen Eigenschaften und Anwendungen von Nichteisenmetallen kennen.

4 Schlüsselqualifikationen

Key qualifications

Sozialkompetenz	Methodenkompetenz	Selbstkompetenz / Personenkompetenz	Interkulturelle Kompetenz	Medienkompetenz
	Y	X		

5 Lehrveranstaltung/ -methoden

Course type and methods

Vorlesung

- Interaktive Vorlesung
- Fallbeispiel
- Drill and Practice

Praktikum/Projekt

Labor

6 Vorbedingungen / Vorkenntnisse

Prerequisites

Werkstoffkunde 1 und 2

Kunststoffe als Konstruktionswerkstoffe

7 | Arbeitsmittel / Literatur

Required material / Literature

- O. Jacobs, Verbundwerkstoffe, Vorlesungsskriptum, FH Lübeck
- Flemming/Ziegmann/Roth, Faserverbundbauweise, Bd. 1-3, Springer Verlag
- Neitzel, Handbuch Verbundwerkstoffe, Hanser Verlag
- G.W. Ehrenstein, Faserverbund-Kunststoffe, Hanser Verlag
- V. Läpple et.al.: Werkstofftechnik Maschinenbau, Europe Lehrmittel, Haan-Gruiten
- M. Peters, C. Leyens (Hrsg.), Titan und Titanlegierungen, Weinheim, Wiley-VCH
- B. L. Mordike, H. E. Friedrich: Magnesium Technology, Springer Verlag
- F. Ostermann: Anwendungstechnologie Aluminium, Springer Verlag
- sowie Vorlesungsskript Täck und verschiedene hand outs in den Vorlesungen

Detailinformationen

8 Inhalte

Course topics

Übersicht Verbundwerkstoffe

- MMC, PMC, CMC
- Partikelverbunde, Faserverbunde, Schichtverbunde, Durchdringungsverbunde

Komponenten eines Faserverbundwerkstoffs

- Matrizes: Duromere, Thermoplaste, Auswahlkriterien
- Glasfasern, Kohlenstofffasern, Aramidfasern, Naturfasern: Herstellung, Aufbau, Eigenschaften, Auswahlkriterien
- Faser-Matrix-Grenzschicht: Haftungsmechanismen, Haftvermittler

Halzeugformen von FVK

- · Hochleistungsverbundwerkstoffe: Rovings, Prepregs (UD, Gewebe), textile Halbzeugformen, Gelege etc.
- Halbzeuge für die Massenfertigung: Fliese, BMC, SMC, Spritzgussformmassen, Pultrusionsprofile etc.
- Ver- und Bearbeitungsarbeitungsverfahren

Schädigungsmechanismen und Prüfverfahren

- Matrixbruch, Faserbruch, Delamination
- zerstörende und nichtzerstörende Prüfung

Überblick bedeutender Nichteisenmetalle und ihre Anwendungen: Cu, Zn, Ni

Aluminium, Titan und Magnesium näher betrachtet

- Eigenschaften, Werkstoffbezeichnungen, Legierungselemente, Festigkeitssteigernde Mechanismen, Korrosion, Anwendungen **Praktikum**
- Herstellung von FVK, Gefügeuntersuchungen daran und mechanische Prüfung
- Gruppenarbeiten mit Präsentationen und praktische metallkundliche Laboruntersuchungen

9 Prüfungsform

Fachprüfung:

Assessment

Prüfungsvorleistung: Keine

Schriftliche Klausurarbeit

10 Voraussetzung für die Vergabe von Kreditpunkten

Requirements for granting of credits

- Erfolgreiches Bestehen der einzelnen Prüfungsteile gemäß Zeile 9 "Prüfungsform"
- Teilnahme an den Praktikumsversuchen und deren erfolgreiche Auswertung in Protokollen

11 Weiterführende Veranstaltungen

Related courses

Verbundwerkstoffe 2 und Keramik

12 Zuordnung

Classification

Mathematik & Naturwissenschaft	ingenieur- wissenschaften	ingenieur- anwendungen	Konstruktion	Fertigung	Wirschaft, Management, Sprachen	Anderes
	X	X	X	Χ		

13 Modulbeauftragter / Lehrpersonen

Responsible person / Lecturers

Prof. Dr. Jacobs, Prof. Dr. Täck / Prof. Dr. Jacobs, Prof. Dr. Täck